Задание 2

EF3 2019

С.В. Игонин

1. Определить выражение

Дан фрагмент ТИ.

x1	x2	х3	х4	х5	х6	x7	F
1	0	0	1	1	1	1	0
0	1	0	0	1	0	1	1
0	1	0	1	1	0	1	0

Каким из приведенных выражений может быть F

1)
$$\overline{x_1} \wedge x_2 \wedge \overline{x_3} \wedge \overline{x_4} \wedge x_5 \wedge \overline{x_6} \wedge x_7$$

2)
$$x_1 \wedge x_2 \wedge x_3 \wedge \overline{x_4} \wedge \overline{x_5} \wedge \overline{x_6} \wedge \overline{x_7}$$

3)
$$x_1 \wedge \overline{x_2} \wedge \overline{x_3} \wedge \overline{x_4} \wedge x_5 \wedge x_6 \wedge \overline{x_7}$$

4)
$$x_1 \wedge \overline{x_2} \wedge x_3 \wedge x_4 \wedge \overline{x_5} \wedge \overline{x_6} \wedge x_7$$

Алгоритм:

- 1. Определяем для каждого выражения внешнюю операцию.
- 2. Подставляем каждое выражение в ТИ
 - 2.1 для конъюнкции начинаем со строки F=1
 - 2.2 для дизъюнкции со строки с F=0
- 3. Проверяем все варианты ответов, даже в том случае, если подошел первый.

2.1 Определить количество строк

Дан фрагмент ТИ. Укажите максимально возможное количество строк полной ТИ, в которой значение x_3 не совпадает с F

x1	x2	х3	х4	х5	х6	F
0	1	1	1	0	0	1
1	0	0	1	1	0	1
1	0	1	0	1	0	1
0	1	1	1	1	1	0

Алгоритм:

Анализировать исходя из общего количества (2^n)

Решение:

- 1. Подсчитаем общее количество строк $2^6 = 64$
- 2. Из этих 64 строк ровно в двух строках $F \neq x_3$
- 3. Про остальные строки ничего не известно. Просится указать наибольшее число строк => предполагаем, что в остальных 60 строках $F \neq x_3$.
- 4. Максимальное количество строк: 60 + 2 = 2

2.2 Определить количество строк

Каждое из логических выражение **F** и **G** содержит **5** переменных. В таблицах истинности выражений **F** и **G** есть ровно **5** одинаковых строк, причем ровно в 4 из них в столбце значений стоит 1. Сколько строк таблицы истинности ДЛЯ выражения $\mathbf{F} \lor \mathbf{G}$ содержит $\mathbf{1}$ в столбце значений?

Решение:

- 1. Общее количество строк $2^5 = 32$
- 2. Нарисуем таблицу истинности для F и G

x1x5	F	G	F∨G
	1	1	
	1	1	
	1	1	
	1	1	
	0	0	

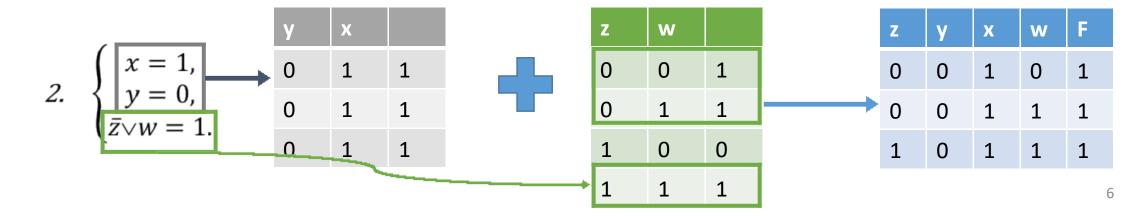
- 3. РОВНО 5 ОДИНАКОВЫХ СТРОК => в оставшихся 32 - 5 = 27 строках $F \neq G =>$ $F \lor G = 1$
- Общее количество строк,
 в которых F∨G = 1: 4 + 27 = 31

3 Соответствие столбцам

Упрощение логического выражения (не всегда хорошо)

3.1 Внешняя операция

$$F(x, y, z, w) = x \land \bar{y} \land (\bar{z} \lor w)$$


?	?	?	?	F
0	0	1	0	1
0	0	1	1	1
1	0	1	1	1

Алгоритм:

- 1. Определяем внешнюю операцию
- 2. Составляем систему уравнений
- 3. Сравниваем систему с таблицей истинности

Решение:

1. Внешняя операция конъюнкция: А∧В∧С=1 ⇔ А=В=С=1

3.2 СДНФ (СКНФ)

$$F(x,y,z) = \bar{z} \land x \lor x \land y$$

?	?	?	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Алгоритм:

- 1. Приводим выражение с СДНФ (СКНФ)
- 2. Сопоставляем каждую конъюнкцию (дизъюнкцию) с соответствующей строкой с F = 1 (F = 1) и распределяем переменные по столбцам

Решение:

1.
$$\bar{z} \wedge x \vee x \wedge y = (x \wedge y \wedge \bar{z}) \vee (x \wedge \bar{y} \wedge \bar{z}) \vee (x \wedge y \wedge z)$$

2. Для каждой конъюнкции: А∧В∧С=1 ⇔ А=В=С=1

	?	?	х	F
$(x \wedge \bar{y} \wedge \bar{z})$	0	0	1	1
	0	1	1	1
	1	1	1	1

	Z	у	Х	F
$(x \wedge y \wedge \bar{z})$	0	0	1	1
$(x \wedge \bar{y} \wedge \bar{z})$	0	1	1	1
$(x \wedge y \wedge z)$	1	1	1	1

3.3 «Чаще других»

$$F(x,y,z,w) = (x \equiv (w \lor y)) \lor ((w \to z) \land (y \to w))$$

?	?	?	?	F
1			1	0
			1	0
1		1		0

Алгоритм:

- 1. Находим переменную, которая встречается в выражении чаще других
- 2. Строим систему уравнений для каждого значения данной переменной, по системе уравнений формируем таблицу истинности
- 3. Сравниваем с исходной таблицей истинности

$$F(x, y, z, w) = (x \equiv (w \lor y)) \lor ((w \to z) \land (y \to w))$$

3.3 «Чаще других»

Решение:

1. При
$$w = 0$$
:

 $F(x, y, z, 0) = (x \equiv y) \lor (0 \to z) \land (y \to 0) = (x \equiv y) \lor (y \to 0) \equiv 0$
 $\begin{cases} x \neq y, \\ y = 1, \\ \forall z. \end{cases}$
 $\begin{cases} x \neq y, \\ y = 1, \\ \forall z. \end{cases}$

2. При $w = 1$:

3. Сравниваем с исходной таблицей истинности

у	х	Z	w	F
1	0		1	0
	0		1	0
1	0	1	9	0

3.4 SPLIT

$$F(x, y, z) = (\bar{x} \lor y \lor z) \land (x \lor \bar{z} \lor \bar{w})$$

?	?	?	?	F
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	1	0	0	0

X	У	Z	w	
0	0	1	1	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

Алгоритм:

- 1. Разбиваем сложное выражение на простые
- 2. Строим таблицу истинности для простых выражений
- 3. Сшиваем две таблицы истинности
- 4. Сравниваем с исходной ТИ

Решение:

1.
$$F(x,y,z,w) = A \wedge B = 0 \Leftrightarrow A = 0$$
 или $B = 0$ $A = \bar{x} \vee y \vee z$, $B = x \vee \bar{z} \vee \bar{w}$

X	У	Z		A
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	rQ.	0
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

$$2 \quad A = 0, \Leftrightarrow x = 1, z = 0, \forall w$$

Упрощение логического выражения (не всегда хорошо)

3 Соответствие столбцам

Признаки
Маленькая таблица истинности
Для конъюнкции наличие строки с F = 1
Для дизъюнкции наличие строки с F = 0
Дана полная таблица истинности, либо все строки, для который выражение
истинно (СДНФ), либо все строки, для которых выражение ложно (СКНФ).
Маленький кусок таблицы истинности
Сложное выражение
Одна из переменных встречается чаще других
Сложное выражение
Переменные встречаются одинаковое количество раз